GCSE MARKING SCHEME

SUMMER 2019

GCSE
CHEMISTRY - COMPONENT 1
C410U10-1
C410UA0-1

INTRODUCTION

This marking scheme was used by WJEC for the 2019 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCSE CHEMISTRY COMPONENT 1: Concepts in Chemistry
 MARK SCHEME
 GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.
One tick must equate to one mark (apart from the questions where a level of response mark scheme is applied).
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Marking rules

All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.
Credit will be given for correct and relevant alternative responses which are not recorded in the mark scheme.

Extended response question

A level of response mark scheme is used. Before applying the mark scheme please read through the whole answer from start to finish. Firstly, decide which level descriptor matches best with the candidate's response: remember that you should be considering the overall quality of the response. Then decide which mark to award within the level. Award the higher mark in the level if there is a good match with both the content statements and the communication statements.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao	$=$ correct answer only
ecf	$=$ error carried forward
bod	$=$ benefit of doubt

Foundation Tier only questions

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
1	(a)			beaker (1) filter paper (1) do not accept filter funnel / filter evaporating basin (1) accept basin	3			3		3
	(b)		carbon dioxide	1			1		1	
	(c)		award (1) for any of following - bubbling stops / fizzing stops / no bubbling - solid remains / solid left on bottom / excess solid / copper(II) carbonate remains	1			1		1	
	(d)		evaporation	1			1		1	
	(e)		ZnCl_{2}		1		1			
			Question 1 total	6	1	0	7	0	6	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)	(i)		oxygen accept $\mathrm{O} / \mathrm{O}_{2}$		1		1		
		(ii)	mercury accept Hg		1		1			
		(iii)	44		1		1			
	(b)	(i)	70		1		1			
		(ii)	gas do not accept vapour		1		1			
	(c)		change thermometer (1) accept melting point apparatus award (1) for any of following reasons - needs a scale up to (at least) $120^{\circ} \mathrm{C}$ - needs a higher maximum temperature - because it only goes up to $110^{\circ} \mathrm{C}$ change water / use oil / use liquid paraffin (1) award (1) for either of following reasons - need a liquid which boils above $100^{\circ} \mathrm{C}$ - because water can only reach $100^{\circ} \mathrm{C}$ - because benzoic acid would not melt in water at $100^{\circ} \mathrm{C}$			4	4		4	
			Question 4 total	0	5	4	\bigcirc	0	4	

Question				Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac		
5	(a)	(i)	I		Fe^{3+}		1		1		
			II	$\mathrm{Fe}_{2} \mathrm{O}_{3}$		1		1			
		(ii)		17 / 17.4 / 17.39 if answer incorrect award (2) for $\frac{1.6}{9.2}$ award (1) for 1.6 or for alternative method award (2) for 100-82.6 award (1) for $\frac{7.6}{9.2}$		3		3	3	3	
		(iii)		leave the experiment until the water level in the tube stops rising			1	1		1	
	(b)	(i)		award (2) for all three bars plotted correctly award (1) for any two bars plotted correctly		2		2	2	2	
		(ii)		grease			1	1		1	
				Question 5 total	0	7	2	9	5	7	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
6	(a)			award (2) for correctly balanced equation $2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ if incorrect award (1) for correct products $\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$ both needed, either order		2		2		
	(b)		all points plotted correctly (1) tolerance $\pm 1 / 2$ square smooth curve from $(0,0)$ through all points (1)		2		2	2	2	
	(c)	(i)	32 ECF possible from curve drawn	1			1	1	1	
		(ii)	80 ECF possible from curve drawn		1		1	1	1	
	(d)		curve to left of plotted graph (1) curve starts at $(0,0)$ and levels off at $50 \mathrm{~cm}^{3}(\pm 1 / 2$ square) (1)	1		1	2		2	
	(e)		a catalyst lowers the minimum energy required for successful collisions	1			1			
			Question 6 total	3	5	1	9	4	6	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)		alkanes	1			1		
		(ii)	as the number of carbon atoms increases, the boiling point increases			1	1			
	(b)		(1) (1) both water molecules needed		2		2			
	(c)		$\mathrm{C}_{8} \mathrm{H}_{18}$		1		1			
			Question 10 total	1	3	1	5	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
11	(a)			support (as carbon dioxide concentration has increased), the mean atmospheric temperature has increased (1) oppose (as carbon dioxide concentration has increased), the mean atmospheric temperature has fluctuated / increased and decreased (1)			2	2	2	
	(b)		both have decreased (1) award (1) for any of following - Greenland has seen a greater decrease (than Antarctica) - Greenland has decreased by 3000Gt and Antarctica by 1500Gt reference to incorrect values - neutral award (2) for Greenland has decreased by twice as much as Antarctica			2	2	1		
	(c)		award (1) for consequence and (1) for associated explanation e.g. increase in sea-levels (1) causing flooding / coastal erosion / contamination of drinking water (1) or habitat destruction (1) causing polar bears die (1)	2			2			
			Question 11 total	2	0	4	6	3	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
12	(a)	(i)		4.5 (2) accept values from 4.4-4.6 if answer incorrect award (1) for any indication of correct rearrangement of the equation e.g. $\frac{\text { mass }}{\text { volume }} \text { or } \frac{45}{10}$		2		2	2	
		(ii)	award (2) for straight line from $(0,0)$ to $(10,79)$ award (1) for any one point marked correctly on grid tolerance $\pm 1 / 2$ small square			2	2	2		
		(iii)	$9.6-5.0=4.6$ density $=\frac{12.5}{4.6}=2.7$ therefore metal must be aluminium (1) do not credit aluminium with no working		2		2	2	2	
	(b)	(i)	(high) electrical conductivity / (good) electrical conductors (1) (high) ductility (1)			2	2			
		(ii)	higher electrical conductivity / better electrical conductor (than aluminium)			1	1			
		(iii)	lower density (than copper)			1	1			
			Question 12 total	0	4	6	10	6	2	

Common questions

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
13/1	(a)	(i)		hydrogen $/ \mathrm{H}_{2}$ do not accept H accept hydrogen sulphide $/ \mathrm{H}_{2} \mathrm{~S}$		1		1		1
		(ii)	copper / Cu		1		1		1	
		(iii)	award (2) for correctly balanced equation $2 \mathrm{Fe}+3 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{FeCl}_{3}$ if incorrect award (1) for correct product FeCl_{3}		2		2			
	(b)		$\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})$ award (1) for each correct product award (1) for both state symbols correct award (2) max if balancing attempted	1	2		3			
			Question 13/1 total	1	6	0	7	0	2	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
16/4	(a)	(i)		award (1) for any of following - make it easier to see the colour change - easier to see colour change - colour change clearer - end point clearer	1			1		1
		(ii)	26.2		1		1		1	
		(iii)	$24.6 \quad$ (2) if incorrect award (1) for 24.55 (mean of two values) or 24.633		2		2	2	2	
		(iv)	contain indicator	1			1		1	
		(v)	award (1) for either of following - add $25.0 \mathrm{~cm}^{3}$ of alkali to $24.6 \mathrm{~cm}^{3}$ of acid - repeat using end-point volumes (of acid and alkali) with no indicator (1) ignore references to evaporation stage	2			2		2	
	(b)		$\begin{array}{ll} \hline 40 & (1) \\ 20 & (1) \end{array}$			2	2	2	2	
			Question 16/4 total	4	3	2	9	4	9	

Higher Tier only questions

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
5	(a)			award (1) for each correct formula $\begin{aligned} & \mathrm{CuSO}_{4} \\ & \mathrm{MgCO}_{3} \\ & \mathrm{HNO}_{3} \end{aligned}$		1	1	3		3
	(b)		on heating (1) ethanol boils at a lower temperature than water (1) ethanol boils first / ethanol boils off leaving water (1) if no other mark credited award (1) for ethanol and water have different boiling points	3			3		3	
	(c)		award (1) for spot at 3.6 cm award (1) for second spot anywhere above spot at 3.6		1	1	2		2	
			Question 5 total	3	2	3	8	0	8	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
7	(a)	(i)		```1920 (1) burning fossil fuels (1) neutral answers - fossil fuels / deforestation```	$\begin{aligned} & 1 \\ & 1 \end{aligned}$			2		
		(ii)	award (1) for any consequence and (1) for linked explanation e.g. (increased) global warming leading to sea-level rise sea-level rise leading to coastal erosion / flooding of coastal areas ice caps melting leading to sea-level rise climate change leading to habitat loss (increased) atmospheric temperature leading to disruption of weather patterns / more extreme weather accept any sensible alternatives and note that most points here could be classed as consequences or explanations	2			2			
	(b)	(i)	increases		1		1			
		(ii)	pH increases (1) neutral answer - acidity decreases lime is a base / neutralises the lake acidity (1) accept - lime is an alkali	2			2			
			Question 7 total	6	1	0	7	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
8	(a)			cryolite (1) accept - $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ lowers the melting point of aluminium oxide (1) neutral answer - makes the process cheaper	2			2		
	(b)		at the cathode $\mathrm{Al}^{3+}+3 \mathrm{e}^{-} \rightarrow \mathrm{Al}$ at the anode $2 \mathrm{O}^{2-} \rightarrow \mathrm{O}_{2}+4 \mathrm{e}^{-} \quad$ (1) accept $\mathrm{O}^{2-}-4 \mathrm{e} \rightarrow \mathrm{O}_{2}$		2		2			
	(c)		close to coast to import bauxite / raw material / aluminium ore (1) neutral answer - reference to export of aluminium close to power station due to need of huge amounts of electricity (1)	2			2			
			Question 8 total	4	2	0	6	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
9	(a)			no mark for opinion award (1) each for any two reasons supporting the same opinion award (1) max if reasons support different opinions no - it will not - takes too long / slow process - only small amounts of metal obtained - only extract copper from top layer of soil / shallow mining - dependent on growing conditions / needs suitable rainfall yes - it will - less environmental damage / no open-cast mines / no SO_{2} pollution - lower grade ores can be used/ high grade ores all used up - decontaminates soil of toxic metals			2	2		

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
(b)	(i)		displacement (1) award (1) for any explanation - adding a metal higher in reactivity series displaces a metal lower in series - adding a metal above copper (in reactivity series) displaces copper from solution - adding a more reactive metal (than copper) displaces it from solution - add iron because it is above copper (in the reactivity series) so it will displace it from solution neutral answer - Cu^{2+} gains electrons alternative method electrolysis (1) (aqueous) Cu^{2+} ions attracted to cathode forming copper (1) neutral answer - Cu^{2+} gains electrons	2			2		2
	(ii)	reduction is gain of electrons (1) Cu^{2+} ions gain electrons to form Cu atoms (1) credit possible for equations e.g. $\begin{align*} & \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu} \\ & \mathrm{Fe}+\mathrm{CuSO}_{4} \rightarrow \mathrm{FeSO}_{4}+\mathrm{Cu} \tag{1} \end{align*}$		2		2			
		Question 9 total	2	2	2	6	0	2	

Question		Marking details		Marks available							
		A01	AO2	AO3	Total	Maths	Prac				
(e)	(i)			increased surface area (1) award (1) for any of following - greater chance of (successful) collisions - greater frequency of (successful) collisions - more (successful) collisions per second		2			2		1
	(ii)	award (1) for any of following - particles move faster - particles have more energy - more particles have the activation energy award (1) for any of following - greater chance of (successful) collisions - greater frequency of (successful) collisions - more (successful) collisions per second		2			2		1		
			Question 10 total	5	8	0	13	6	9		

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
11	(a)			$\mathrm{C}=\mathrm{C} /$ double bond breaks (1) each carbon atom bonds with one bromine atom (1) accept	2			2		
	(b)	(i)	award (1) for any of following $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$	1			1			
		(ii)	propan-2-ol	1			1			
	(c)		 neutral answer -COOH	1			1			
			Question 11 total	5	0	0	5	0	0	

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
14	(a)	(i)		test 3 / flame test (1) calcium gives brick-red flame and sodium gives yellow/orange flame			2	2		2
		(ii)	test 1 / silver nitrate (1) (potassium) chloride gives a white precipitate (1) (potassium) iodide gives a yellow precipitate (1)			3	3		3	
		(iii)	test 2 / add sodium hydroxide and warm (1) ammonium (chloride) gives pungent smell / gas which turns red litmus blue (1) magnesium (chloride) gives no reaction / white precipitate (1)			3	3		3	
	(b)		$\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$		1		1			
			Question 14 total	0	1	8	9	0	8	

Question		Marking details	Marks available						
		A01	AO2	AO3	Total	Maths	Prac		
15			Indicative content - sodium needs to lose one electron to achieve full outer shell - chlorine needs to gain one electron to achieve full outer shell - dot and cross diagram for sodium chloride - ionic bonding - shared pairs of electrons for both atoms to achieve full outer shells - dot and cross diagram for methane - covalent bonding - dot and cross diagrams do not show - 3D lattice of ionic sodium chloride - giant structure - 3D shape of methane molecule - simple molecular - relative strength of forces between ions, between atoms, between molecules - relative sizes of particles 5-6 marks Dot and cross diagrams for both compounds showing good understanding of io attempt at description of limitations in predicting structure type There is a sustained line of reasoning which is coherent, relevant, substantiated scientific terminology and accurate spelling, punctuation and grammar. 3-4 marks Basic dot and cross diagrams for both compounds clearly differentiating betwee There is a line of reasoning which is partially coherent, largely relevant, support candidate uses mainly appropriate scientific terminology and some accurate sp 1-2 marks Attempt at dot and cross diagram for sodium chloride and/or methane There is a basic line of reasoning which is not coherent, largely irrelevant, supp The candidate uses limited scientific terminology and inaccuracies in spelling, pun 0 marks No attempt made or no response worthy of credit.	c and and logical ionic d by so ling, pu ted by nctuatio	alent b y struc covale eviden uation ed evid and gra	ing; ref d. The onding and with gramm ce and ar.	6 nce to didate me s very	ucture ty es appropr ure. The structu	
		Question 15 total	4	2	0	6	0	0	

FOUNDATION TIER
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	6	1	0	7	0	6
2	4	1	0	5	0	4
3	6	2	0	8	2	0
4	0	5	4	9	0	4
5	0	7	2	9	5	7
6	3	5	1	9	4	6
7	2	1	2	5	1	0
8	9	0	0	9	0	0
9	3	5	0	8	2	8
10	1	3	1	5	0	0
11	2	0	4	6	3	0
12	0	4	6	10	6	2
13	1	6	0	7	0	2
14	4	3	0	7	0	0
15	3	2	2	7	3	7
16	4	3	2	9	4	9
TOTAL	48	48	24	120	30	55

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	A01	AO2	AO3	TOTAL MARK	MATHS	PRAC
1	1	6	0	7	0	2
2	4	3	0	7	0	0
3	3	2	2	7	3	7
4	4	3	2	9	4	9
5	3	2	3	8	0	8
6	1	0	3	4	4	0
7	6	1	0	7	0	0
8	4	2	0	6	0	0
9	2	2	2	6	0	2
10	5	8	0	13	6	9
11	5	0	0	5	0	0
12	2	4	0	6	4	0
13	2	4	4	10	1	0
14	0	1	8	9	0	8
15	4	2	0	6	0	0
16	2	8	0	10	8	0
TOTAL	48	48	24	120	30	45

